где обозначает транспонирование вектора [1]. Это уравнение аналогично формуле для кинетической энергии частицы с массой и скоростью v, а именно
и может быть получено из неё, выражая положение каждой частицы системы через q.
В общем случае матрица масс М зависит от состояния q и поэтому изменяется со временем.
Лагранжева механика даёт обыкновенное дифференциальное уравнение (фактически, система связанных дифференциальных уравнений), которое описывает эволюцию системы в терминах произвольного вектора обобщённых координат, который полностью определяет положение каждой частицы в системе. Приведённая выше формула кинетической энергии является одним из членов этого уравнения, которое представляет общую кинетическую энергию всех частиц.
Примеры
Система масс в одном пространственном измерении.
Например, рассмотрим систему, состоящую из двух точечных масс, ограниченных прямой линией. Состояние этих систем может быть описано вектором q двух обобщённых координат, а именно положениями двух частиц вдоль линии.
,
Предположим, что частицы имеют массы m1, m2, кинетическая энергия системы
Эта формула также может быть записана как
где
Система N тел
В более общем случае рассмотрим систему из N частиц, помеченных индексами i = 1, 2,…, N, где положение частицы с номером i определяется ni свободными декартовыми координатами (где ni равно 1, 2 или 3). Пусть q будет вектором столбца, содержащим все эти координаты. Матрица масс M представляет собой диагональнуюблочную матрицу, где в каждом блоке диагональные элементы представляют собой массу соответствующей частицы:[2]
В качестве менее тривиального примера рассмотрим два точечных объекта с массами m1, m2, прикреплённых к концам жесткого безмассового стержня длиной 2R, причём узел может свободно вращаться и скользить по фиксированной плоскости. Состояние системы можно описать обобщённым координатным вектором
где х,у — декартовы координаты средней точки стержня и α представляет собой угол стержня от некоторого произвольного опорного направления. Положения и скорости двух частиц
и их общая кинетическая энергия
где и . Эта формула может быть записана в виде матрицы
где
Обратите внимание, что матрица зависит от текущего угла α стержня.
Механика сплошных сред
Для дискретных приближений механики сплошных сред, как в методе конечных элементов, может быть несколько способов построения матрицы масс, в зависимости от требуемой производительности вычислений и точности. Например, метод с сосредоточенными массами, в котором деформация каждого элемента игнорируется, создаёт диагональную матрицу масс и устраняет необходимость интегрировать массу по деформированному элементу.