Счётной дыркой в линейно упорядоченном множестве
называется пара множеств
таких, что:
,
(не исключается случай
или
),
(то есть все элементы
меньше всех элементов
),
- не существует
такого, что 
При
наличие счётной дырки
означает, что в X нет наименьшего элемента, а при
наличие счётной дырки
означает, что в
нет наибольшего элемента.
Линейно упорядоченное множество называется счётно насыщенным, если в нём нет счётных дырок.
Известно (Хаусдорф), что все счётно насыщенные линейно упорядоченные множества мощности
попарно изоморфны.