Уравнения Прока — обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде

,
где
— антисимметричный тензор электромагнитного поля:

Уравнения Прока также могут быть представлены в виде

.
Уравнения Прока не являются калибровочно-инвариантными.
Лагранжева плотность
Рассматривается поле четырех-потенциала Aμ = (φ/c, A), где φ — это электростатический потенциал, A — магнитный потенциал. Лагранжева плотность задана следующим образом:

где c — скорость света, a ħ — приведенная постоянная Планка.
Вывод уравнения
Уравнение Эйлера — Лагранжа движения для такого Лагранжиана, также называемое Уравнением Прока, имеет следующий вид:

что эквивалентно следующему уравнению
![{\displaystyle \left[\partial _{\mu }\partial ^{\mu }+\left({\frac {mc}{\hbar }}\right)^{2}\right]A^{\nu }=0}](./807abe11295e8f73374aa03e1354619fd4128fa6.svg)
при условии

которое является просто калибровкой Лоренца. При условии, что m = 0, уравнения обращаются в уравнения Максвелла в вакууме (то есть подразумевается отсутствие зарядов и токов). Уравнение Прока тесно связано с
уравнением Клейна — Гордона — Фока.
В более привычных терминах уравнение имеет вид:


Также уравнение Прока можно вывести из теоретико-групповых соображений, как уравнение, инвариантное относительно преобразований Пуанкаре и описывающее волновую функцию элементарной частицы с массой
, спином
, положительной энергией, фиксированной P-чётностью.[1]
Примечания
- ↑ Ляховский В. Д., Болохов, А. А. Группы симметрии и элементарные частицы. — Л., ЛГУ, 1983. - с. 324
Литература
- Боголюбов Н. Н., Ширков Д. В. Квантовые поля. — М.: Наука, 1980. — 320 с. (с. 29, 33).
- Райдер Л. Квантовая теория поля. — М.: Мир, 1987. — 511 с., (с. 86-87).
- Ициксон К., Зюбер Ж.—Б. Квантовая теория поля. Том 1. — М.: Мир, 1984. — 448 с. (с. 166).